Package: chooseGCM 1.0.1

chooseGCM: Selecting General Circulation Models for Species Distribution Modeling

Methods to help selecting General Circulation Models (GCMs) in the context of projecting models to future scenarios. It is provided clusterization algorithms, distance and correlation metrics, as well as a tailor-made algorithm to detect the optimum subset of GCMs that recreate the environment of all GCMs.

Authors:Dayani Baili [aut], Reginaldo Ré [aut], Marcos Lima [aut], Luíz Esser [aut, cre, cph]

chooseGCM_1.0.1.tar.gz
chooseGCM_1.0.1.zip(r-4.5)chooseGCM_1.0.1.zip(r-4.4)chooseGCM_1.0.1.zip(r-4.3)
chooseGCM_1.0.1.tgz(r-4.4-any)chooseGCM_1.0.1.tgz(r-4.3-any)
chooseGCM_1.0.1.tar.gz(r-4.5-noble)chooseGCM_1.0.1.tar.gz(r-4.4-noble)
chooseGCM_1.0.1.tgz(r-4.4-emscripten)chooseGCM_1.0.1.tgz(r-4.3-emscripten)
chooseGCM.pdf |chooseGCM.html
chooseGCM/json (API)
NEWS

# Install 'chooseGCM' in R:
install.packages('chooseGCM', repos = c('https://luizesser.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/luizesser/choosegcm/issues

On CRAN:

3.88 score 4 scripts 3 downloads 14 exports 120 dependencies

Last updated 17 hours agofrom:9045af580f. Checks:OK: 5 NOTE: 2. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 22 2024
R-4.5-winOKNov 22 2024
R-4.5-linuxOKNov 22 2024
R-4.4-winNOTENov 22 2024
R-4.4-macNOTENov 22 2024
R-4.3-winOKNov 22 2024
R-4.3-macOKNov 22 2024

Exports:closestdist_gcmscompare_gcmscor_gcmsdist_gcmsenv_gcmsflatten_gcmshclust_gcmsimport_gcmskmeans_gcmsmontecarlo_gcmsoptk_gcmssummary_gcmstransform_gcmsworldclim_data

Dependencies:abindaskpassbackportsbase64encbootbroombslibcachemcarcarDatacheckmatecliclustercolorspacecorrplotcowplotcpp11crosstalkcurldendextendDerivdigestdoBydplyrDTellipseemmeansestimabilityevaluatefactoextraFactoMineRfansifarverfastmapflashClustfontawesomeFormulafsgenericsggcorrplotggplot2ggpubrggrepelggsciggsignifgluegridExtragtablehighrhtmltoolshtmlwidgetshttpuvhttrisobandjquerylibjsonliteknitrlabelinglaterlatticelazyevalleapslifecyclelme4magrittrMASSMatrixMatrixModelsmemoisemgcvmicrobenchmarkmimeminqamodelrmultcompViewmunsellmvtnormnlmenloptrnnetnumDerivopensslpbkrtestpillarpkgconfigplyrpolynompromisespurrrquantregR6rappdirsRColorBrewerRcppRcppEigenreshape2rlangrmarkdownrstatixsassscalesscatterplot3dSparseMstringistringrsurvivalsysterratibbletidyrtidyselecttinytexusedistutf8vctrsviridisviridisLitewithrxfunyaml